
Herb Sutter

2

Major advances are on track

 std::execution (concurrency and parallelism)

 Type and memory safety improvements

 Reflection + code generation (aka ‘injection’/…)

 Contracts

 means “some initial parts already voted into C++26”

3

Major advances are on track

 std::execution (concurrency and parallelism)

 Type and memory safety improvements
 target: parity with other modern languages

 Reflection + code generation (aka ‘injection’/…)
 part of our tide to compile-time programming

 arguably most-impactful feature ever added

 I expect will dominate our next decade

 Contracts

 means “some initial parts already voted into C++26”

4

memory
safety

attacks

“cold” cyberwar, in progress

1 2 includes

• timing: starting in C++26
• technical: UB
• simplicity (3): code & tools

5

6

part of the 30+-year tide → compile-time meta programming in C++

“The world’s big things only can be done
by paying attention to their humble beginnings.” — Lao Tzu

7

template <int i> struct D { D(void*); operator int(); };

template <int p, int i> struct is_prime {
enum { prim = (p%i) && is_prime<(i>2 ? p : 0), i-1>::prim };

};

template <int i> struct Prime_print {
 Prime_print<i-1> a;
 enum { prim = is_prime<i, i-1>::prim };
 void f() { D<i> d = prim; }
};

struct is_prime<0,0> { enum {prim=1}; };
struct is_prime<0,1> { enum {prim=1}; };
struct Prime_print<2> { enum {prim=1}; void f() { D<2> d = prim; } };

main () {
 Prime_print<10> a;
}

Erwin Unruh: The most famous C++ program that doesn’t compile
1994:

TC!

Original Metaware compiler error messages

Type 'enum{}' can't be converted to type 'D<2>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<3>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<5>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<7>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<11>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<13>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<17>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<19>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<23>' ("primes.cpp",L2/C25).
Type 'enum{}' can't be converted to type 'D<29>' ("primes.cpp",L2/C25).

8

2001:

TMP

9

more math, allocators,
non-literal params, …

new/delete, virtual, lambdas,
try/catch, vector/string, …

lambdas, constexpr destructors,
if constexpr, static_assert, …

more statements, local variables,
if/switch, for/while, member functions, …

one return statement

C++

23
C++

20
C++

17
C++

14
C++

11

10

concepts, ranges,
‘moar constexpr,’ …

new/delete, constexpr, CTAD,
structured bindings, …

lambdas, range-for, variadic

templates, static_assert, …

more statements, local variables,
if/switch, for/while, …

throw a few instructions at a pixel as it flies by

CUDA

12 (2022)

CUDA

11 (2020)

CUDA

7 (2015)

‘Moar
shaders!’

Shaders

11

more math, allocators,
non-literal params, …

new/delete, virtual, lambdas,
try/catch, vector/string, …

lambdas, constexpr destructors,
if constexpr, static_assert, …

more statements, local variables,
if/switch, for/while, member functions, …

one return statement

C++

23
C++

20
C++

17
C++

14
C++

11

12

pause to consider what this implies

C++ is the language we want at compile time

C++ is the language we want on GPUs

13

code generation/injection

generative extensions

introspection of closure types

function parameters

reflection, splicers, meta::info, metafunctions

P3294

P3157

P3273

P3096

P2996

14

Thanks to Matúš Chochlík!

struct MyOpts {

std::string file_name = "input.txt"; // "--file_name <string>"

int count = 1; // "--count <int>"

};

int main(int argc, char *argv[]) {

 MyOpts opts = parse_options<MyOpts>(

 std::vector<std::string_view>(argv+1, argv+argc)

);

 std::cout << "opts.file=" << opts.file_name << '\n';

 std::cout << "opts.count=" << opts.count << '\n';

}

15

template<typename Opts>

consteval auto parse_options(std::span<std::string_view const> args) -> Opts

{

 Opts opts;

template for (constexpr auto dm : nonstatic_data_members_of(^^Opts)) {

 auto it = std::ranges::find_if(args,

 [](std::string_view arg){

 return arg.starts_with("--")

 && arg.substr(2) == identifier_of(dm);

 });

 if (it == args.end()) {

 continue; // not provided, use default

 } else if (it + 1 == args.end()) {

 std::print(stderr, "Option {} is missing a value\n", *it);

 std::exit(EXIT_FAILURE);

 }

 using T = typename[:type_of(dm):];

the type itself is a function input

expansion statement

^^ reflection expression
and std::meta:: metafunctions

16

 return arg.starts_with("--")

 && arg.substr(2) == identifier_of(dm);

 });

 if (it == args.end()) {

 continue; // not provided, use default

 } else if (it + 1 == args.end()) {

 std::print(stderr, "Option {} is missing a value\n", *it);

 std::exit(EXIT_FAILURE);

 }

 using T = typename[:type_of(dm):];

 auto iss = std::ispanstream(it[1]);

 if (iss >> opts.[:dm:]; !iss) {

 std::print(stderr, "{} is not a valid {}\n",

 *it, display_string_of(dealias(^^T)));

 std::exit(EXIT_FAILURE);

 }

 }

 return opts;

}

e.g., “int” at compile time

better than typeid(T).name()
(e.g., “i” at run time)

splices

17

18

Two current implementations tracking P2996 ++

EDG-based Daveed Vandedoorde (EDG)

Clang-based Dan Katz (Bloomberg)

Other related prototype implementations

Clang-based Andrew Sutton et al. (Lock3)

Cppfront mine

Circle Sean Baxter

19

See essay here: tinyurl.com/sutter-safety
(herbsutter.com/2024/03/11/safety-in-context)

memory
safety
attacks

“cold” cyberwar, in progress

Software security (or “cybersecurity” or similar)

making software able to protect its assets from a malicious attacker

examples: securing power grids, hospitals, banks, personal data, secrets, …

Software safety (or “life safety” or similar)

making software free from unacceptable risk of causing unintended harm to
humans, property, or the environment

examples: hospital equipment, autonomous vehicles/weapons

Programming language safety (incl. memory safety)

static and dynamic guarantees about program correctness

helps both the others — [more on this in section 3]

21

The actual problem: Safety parity (not perfection)

4 low-hanging priority targets:

 type, bounds, initialization & lifetime safety

== 4 most severe CWE categories, 4 that all MSLs do better at

Progress

Key safe libraries moving from 3rd-party to standard
 (e.g., C++20 std::span<T> to replace pointer math)

Safety-related undefined behavior being removed
 (e.g., Mar 2024: reading uninit stack vars not UB!)

Key static safety rules Profiles: most known, “shift-left” to compile time

Add dynamic safety checks as needed (e.g., bounds, null)

Ty

In
Li

Bo

22

performance & control by default,
safety always available

today: “watch out”

23

performance & control by default,
safety always available

safety by default,
performance & control always available

today: “watch out” tomorrow: “opt out”

24

Progressing in WG21: Safety Profiles framework

 (Stroustrup & Dos Reis)

pro·file /ˈprōˌfīl/ noun

a name for a set of rules enforced at compile time,

that guarantees the absence of a class of defects,

and the programmer can enable for a volume of code

Profiles can be added over time, and enabled selectively & incrementally

Key: take (mostly-already-known) rules, “shift-left” to compile time

25

from the Praise page

“... This book’s emphasis on the security aspects of C

programming is unmatched … use all of the available

tools it presents to avoid undefined behavior

in the C programs you write.”

— Pascal Cuoq, Chief Scientist, Trustinsoft

“An excellent introduction to modern C.”

— Francis Glassborow, ACCU

…

“This is why you should program in C. Because

 other languages don’t open portals to hell.”

— Michał Zalewski, former CISO, Snap Inc.

26

Undefined behavior means “anything can happen”
Usual examples nasal daemons, format c:

Actual bad examples time travel, leaking secrets

C++26 introduces a new tool: erroneous behavior
“Well-defined as being Just Wrong”

Not undefined no time travel, or leaked secrets!

A general tool, but first applied to…
 Reading uninitialized local variables
 is not undefined behavior in C++26!

A C++26 compiler is required to write an “erroneous” value

27

Pause a moment and consider how this is important:

QUANTITATIVELY Automatically eliminates a significant fraction

(5%? 10%?) of vulnerabilities and other bugs

Qualitatively Delivered to existing code with no manual

code changes, just a recompile

 seriousness about adoptability & improving safety of existing code

28

auto f1() {
 char a[] = {'s', 'e', 'c', 'r', 'e', 't' };
}

auto f2() {
 char a[6]; // or std::array<char,6>

print(a); // today this likely prints "secret"
}

int main() {
 f1();
 f2();
}

29

auto f1() {
 char a[] = {'s', 'e', 'c', 'r', 'e', 't' };
}

auto f2() {
 char a[6]; // or std::array<char,6>

print(a); // C++26: prints "������" or "" or... but not "secret"
}

int main() {
 f1();
 f2();
}

30

31

32

Why not zero-init?

If zero isn’t a program-meaningful value, just changes one bug into another

Not like a world where zero-init was always the language rule!

Actively hides real problems — makes uninitialization invisible to sanitizers

Can I opt out?

Yes (this is still C++!) int a [[indeterminate]] ;

Why didn’t C++ always do this?

Cost, esp for large objects & buffers…

In section 3, I’ll talk about how we can do even better…

33

Q: Do you think it’s believable that C++ could evolve to

eliminate most safety-related undefined behavior

by default?

34

more
compile-time
programming

consteval
reflection
generation

more safety

profiles
checks

guarantees

less
undefined
behavior

35

more
compile-time
programming

consteval
reflection
generation

more safety

profiles
checks

guarantees

less
undefined
behavior

36

37

38

simplification through generalization

key: enable programmer to directly express intent

 elevate coding patterns to declare “what” vs “how”
 use the intent already in the code, instead of “how” annotations

“Inside C++, there is a much smaller and cleaner language struggling to get out.”
— B. Stroustrup (D&E, 1994)

“Say 10% of the size of C++ … Most of the simplification would come from generalization.”
— Bjarne Stroustrup (ACM HOPL-III, 2007)

memory
safety

attacks

“cold” cyberwar, in progress

40

2017: Paper P0707 on metaclass functions

Main purpose: “yes we need static reflection + source generation as

game-changing, and here are North Star examples of what’s possible”

2017 Toronto meeting: “Hi, I’m their [reflection proposers’] customer”

First major Cpp2 feature I brought to WG21 & conferences

Because it was key to simplification: Metaclass functions and parameter passing

were the two biggest sources of simplification in Cpp2, because they let

programmers declare their intent

Because it carried the highest risk: Would the committee & community accept

that huge a leap forward in compile-time programming? Would a full reflection

implementation actually work and not hit language/compiler limits?

41

// Example 1: Possible with P2996

namespace __prototype { class widget { /*...*/ }; }

consteval{ metafunc(^^__prototype::widget); }

 // e.g., generates something like:

 // class widget {

 // /* based on the reflection

 // of __prototype::widget */

 // };

 // Example 2: P0707 proposes to let class(M) mean

 // "apply M to the class being defined"

 class(metafunc) widget{ /*...*/ };

 // identical meaning as above

42

class IFoo {

public:

virtual int f() = 0;

virtual void g(std::string) = 0;

virtual ~IFoo() = default;

IFoo() = default;

IFoo(IFoo const&) = delete;

void operator=(IFoo const&) = delete;

};

class(interface) IFoo {

 int f();

 void g(std::string);

};

43

namespace __proto {
 class Widget {
 int f();
 void g(std::string);
 };
}
consteval { interface(^^__proto::Widget); }

class MyWidget : public Widget {
public:
 int f() override { return 42; }
 void g(std::string s) override { std::cout << s; }
};

int main() {
 unique_ptr<Widget> w = make_unique<MyWidget>();
 cout << w->f() << '\n';
 w->g("xyzzy");
}

// P0707 proposed sugar

class(interface) Widget {

 int f();

 void g(std::string);

};

44

consteval void interface(std::meta::info proto) {

 std::string_view name = identifier_of(proto);

queue_injection(^^{

 class \id(name) {

public:

 \tokens(make_interface_functions(proto))

virtual ~\id(name)() = default;

\id(name)() = default;

\id(name)(\id(name) const&) = delete;

void operator=(\id(name) const&) = delete;

 };

});

}

composable ✓

45

consteval auto make_interface_functions(info proto) -> info {

 info ret = ^^{};

for (info mem : members_of(proto)) {

 if (is_nonspecial_member_function(mem)) {

 ret = ^^{

 \tokens(ret)

virtual [:\(return_type_of(mem)):]

\id(identifier_of(mem)) (\tokens(parameter_list_of(mem))) = 0;

 };

 }

 else if (is_variable(mem)) {

 // --- reporting compile time errors not yet implemented ---

 // print_error("interfaces may not contain data members");

 }

 // etc. for other kinds of interface constraint checks

 }

 return ret;

}

46

interface An abstract class having only pure virtual functions

polymorphic_base A pure polymorphic base type that is not copyable or movable, and whose
destructor is either public+virtual or protected+nonvirtual

ordered A totally ordered type with operator<=> that implements
strong_ordering. Also: weakly_ordered, partially_ordered

copyable A type that has copy/move construction/assignment

basic_value A copyable type that has public default construction and destruction
(generated if not user-written) and no protected or virtual functions

value An ordered basic_value. Also: weakly_ordered_value,
partially_ordered_value

struct A basic_value with all public members, no virtuals, no custom assignment

enum An ordered basic_value with all public values

flag_enum An ordered basic_value with all public values, and bitwise sets/tests

union A safe (tagged) union with names (unlike std::variant)

regex A CRTE-style compile time regex, but using reflection+generation (Max

47

interface An abstract class having only pure virtual functions

polymorphic_base A pure polymorphic base type that is not copyable or movable, and whose
destructor is either public+virtual or protected+nonvirtual

ordered A totally ordered type with operator<=> that implements
strong_ordering. Also: weakly_ordered, partially_ordered

copyable A type that has copy/move construction/assignment

basic_value A copyable type that has public default construction and destruction
(generated if not user-written) and no protected or virtual functions

value An ordered basic_value. Also: weakly_ordered_value,
partially_ordered_value

struct A basic_value with all public members, no virtuals, no custom assignment

enum An ordered basic_value with all public values

flag_enum An ordered basic_value with all public values, and bitwise sets/tests

union A safe (tagged) union with names (unlike std::variant)

regex A CRTE-style compile time regex, but using reflection+generation (Max
Sagebaum)

print Print the reflection as source code at compile time

48

Hana Dusíková: Compile Time Regular Expressions (CTRE)
compile-time-regular-expressions.readthedocs.io/en/latest/

www.compile-time.re

constexpr + templates
For compile-time defined patterns

Compile time parsing

Compile time & run-time matching

Quick regex matching/searching
Structured bindings

DFA without captures

Very efficient assembly

49

CTRE
(Hana Dusíková, 2017+)

Cppfront @regex
(Max Sagebaum, 2024)

Feature set Nearly full PCRE (Perl) Most of PCRE

Parsing
Template stack,

dedicated engine for each regex
Reflection + code gen,

dedicated engine for each regex

Engine Template classes Template classes

50

my_regexes: @regex type = {
 r := "ab{0,}bc";
}

if (my_regexes::r.search(str).matched)
{
 …
}

//
// CTRE template + constexpr code
//

if (auto m = ctre::match<"ab{0,}bc">(str))
{
 …
}

compile-time
reflection + source

generation

CTRE cppfront

51

52

Haskell Regex POSIX test suite
hackage.haskell.org/package/regex-posix-unittest
wiki.haskell.org/Regex_Posix

Qt moc extensions Proposed (strawman)

53

class MyClass : public QObject {
 Q_OBJECT
public:
 MyClass(QObject* parent = 0);

 Q_PROPERTY(int value READ get_value
WRITE set_value)
 int get_value() const
 { return value; }
 void set_value(int v)
 { value = v; }
private:
 int value;

signals:

 void mySignal();

public slots:

 void mySlot();

};

class(Qclass) MyClass {
 property<int> value { }; // default
 signal mySignal();
 slot mySlot();
};

.h – with
extensions

Qt moc Proposed

54

.h

.cpp

C++ compiler

.cpp

moc compiler

generated
moc_*.cpp

C++ compiler

COM IDL-style extensions Proposed (strawman)

55

[

object,

uuid(a03d1420-b1ec-11d0-8c3a-00c04fc31d2f),

]

interface IFoo : IInspectable {

 [propget]
 HRESULT Get(
 [in] UINT key,
 [out, retval] SomeClass** value
);

 [propput]
 HRESULT Set(
 [in] UINT key,
 [in] SomeClass* value
);

};

class(rt_interface<
"a03d1420-b1ec-11d0-8c3a-00c04fc31d2f">)

IFoo {
 property<UINT,SomeClass> value;
};

.obj, .lib, .dll.winmd

C++/CX (for WinRT) Proposed

56

.h

.cpp

C++ compiler

.obj, .lib, .dll.winmd

.h – with
extensions

.cpp – with
extensions

C++ compiler –
with extensions

.h

.obj, .lib, .dll.winmd

C++/WinRT IDL (like COM) Proposed

57

.idl – C-like source

.cpp

MIDL compiler

generated
_i.c, _p.c, .h

C++ compiler

.h

.cpp

C++ compiler

.obj, .lib, .dll.winmd

Today (separate YAML script) Proposed (strawman)

58

ExampleHit :

 Description : "Example Hit"

 Author : "B. Hegner"

 Members:

 - double x // x-coordinate

 - double y // y-coordinate

 - double z // z-coordinate

 - double energy // measured

class(podio::datatype) ExampleHit {
 string Description = "Example Hit";
 string Author = "B. Hegner";

 double x; // x-coordinate
 double y; // y-coordinate
 double z; // z-coordinate
 double energy; // measured
};

default + enforce: constexpr static strings
generate: same 5 classes

how: during normal C++ compilation

generate: 5 interrelated classes…
X, XCollection, XConst, XData, XObj

how: separate code generator

.obj, .lib, .dll

podio YAML Proposed

59

.yaml – structured
text script

generated C++

code generator

C++ compiler

C++

C++ compiler

.obj, .lib, .dll

60

61

Welcome to C++’s next decade!

Conjecture: Reflection+generation will dominate the next decade of C++

Making easier things that are difficult today (e.g., TMP, expression templates)
Making possible things that are infeasible today (e.g., generative programming)

Expect multiple phases… the first phase is “now in sight”

62

“All information in the source code
must be reflectable”

If the programmer can know it, they’ll want to use it

Examples: Attributes, defaults (meaningful whitespace!)

 (note: in the language; likely not preprocessor)

.

class Foo {
 int func1();
public:
 void func2(int);
};

struct Foo {
 int func1();
public:
 void func2(int);
};

class(interface) Foo {
 int func1();
public:
 void func2(int);
};

63

“All information in the source code
must be reflectable”

If the programmer can know it, they’ll want to use it

Examples: Attributes, defaults (meaningful whitespace!)

 (note: in the language; likely not preprocessor)

“Anything that can be written in source code
must be generatable”

If the programmer can write it by hand,
they’ll want to write it by generated code

Examples: Types, free functions,
specializations of std:: templates

class(class) Foo {
 int func1();
public:
 void func2(int);
};

class(struct) Foo {
 int func1();
public:
 void func2(int);
};

class(interface) Foo {
 int func1();
public:
 void func2(int);
};

64

“All source code must be visible, whether hand-written or generated”

The final code is the only source of truth.

Entry level: We need to see what we got pretty-print generated code

Then tooling:
 Debugging (e.g., step into generated code)
 Visualizing (e.g., expand/collapse generated code)
 …

Generalizing: “All output (text + binary) must be possible at compile time”

Example: .winmd output files

Output files for other tools

…

65

Good: Standardizing some now, adding more later

But requires:

A “North Star”: We have to know the end use cases we’re aiming for

Design guardrails: We have to know we’re not going off on a side track

Relatively easy for constexpr and GPUs: “support the language feature, not a divergent
special-purpose extension” such as a different kind of loop

Risk of bottom-up design is that we may end up with
overlapping pieces that don’t fill in the whole picture

Suggested aim: P0707 metafunctions, Andrei’s instrumented_vector,
 reflect+regenerate any type (“identity”)

Learn from related experience (C#, D, Lock3, cppfront)

Photo: Die Hard Dice

memory
safety

attacks

“cold” cyberwar, in progress

67

Software security (or “cybersecurity” or similar)

making software able to protect its assets from a malicious attacker

examples: securing power grids, hospitals, banks, personal data, secrets, …

Software safety (or “life safety” or similar)

making software free from unacceptable risk of causing unintended harm to
humans, property, or the environment

examples: hospital equipment, autonomous vehicles/weapons

Programming language safety (incl. memory safety)

static and dynamic guarantees about program correctness

helps both the others — and increases quality generally

68

Q: Is this “righteous, most excellent” code?
std::array<int,1024> a; // A – uninitialized?

fill(a); // B – call a function that sets a’s values

For line A:

If uninitialized, this program is actually ideal
 … but analyzers/humans can’t prove that fill(a) fills a

If initialized, we know the dummy writes aren’t needed…
 … but optimizers are terrible at removing the “dead writes”
 … for the same reason: they can’t prove that fill(a) fills a

Usual plea: “But it’s obvious! Compiler writers, just try harder!”

Usual answer: “Fine, you try to look through an opaque function call!”

69

Both “force initialize at declaration” (e.g., C++ Core Guidelines)
and “fill with pattern” approaches jam in dummy values

What we really want is “initialize before use”

C#, Ada, and other language have “definite initialization” rules for local vars

Experience: easy to specify, easy to use by mainstream developers

What I’ve implemented in Cpp2 (github.com/hsutter/cppfront):

All locals (all types!) “unconstructed” if not explicitly initialized fast by default

Guaranteed construction before first use on any branch path correct always

Via either direct construction or passing to a fill function’s “out” parameter

 fully composable init, generalized delegating constructors

70

Using a fundamental type, for example: int

a: int; // allocates space, no initialization

// std::cout << a; // illegal: can't use-before-init!

a = 5; // construction => real initialization!

std::cout << a; // prints 5

Using any type, for example: std::vector<std::string>

b: vector<string>; // allocates space, no initialization

// std::cout << b.size(); // illegal: can't use-before-init!

b = ("xyzzy", "plugh"); // construction => real initialization!

std::cout << b.size(); // prints "2"

71

72

73

What I’ve already implemented in Cpp2 as proof of concept: For every a[b]
where a is a contiguous range (incl. std::size(a)) and b is integral…

Inject a call-site bounds check for 0 <= b && b < std::size(a)

Violations reported via normal contract violation handling customizable

Results so far:

Seamless: Works perfectly for all existing std:: contiguous containers/views/ranges

Also works for C arrays (before they decay, while their names are in scope)

Also works for most non-std containers/views/ranges (std::size and operator[] are widely
used… “C++ code contains a lot of information!”)

Customization enables easy integration into existing projects’ error/logging

Proposal for future ISO C++ code: “Enable ‘bounds’ Profile and recompile”

74

// int a[] = {1, 2, 3}; // uncomment either one: C array
// std::vector<int> a = {1, 2, 3}; // or STL container (unmodified)

print(a[1]); print(a[2]); print(a[3]); // line 7

75

Good: Providing safety guarantees

But requires:

Confidence: We have to know the rules actually work

Adoptability: We have to know end user code can adopt it, incl. in existing code

Impact: We have to know it will help as much code as possible, incl. existing code

Risk of ad-hoc safety design is that we may end up with improvements
that don’t work adoptably at scale and/or for existing code

Suggested aim: embrace existing known-good safety rules + no heavy/viral
annotation + articulate what % of benefit can be had in existing code without
manual code changes (just a recompile), not just new/updated code

Photo: Die Hard Dice

76

simplification through generalization

key: enable programmer to directly express intent

 elevate coding patterns to declare “what” vs “how”
 use the intent already in the code, instead of “how” annotations

“Inside C++, there is a much smaller and cleaner language struggling to get out.”
— B. Stroustrup (D&E, 1994)

“Say 10% of the size of C++ … Most of the simplification would come from generalization.”
— Bjarne Stroustrup (ACM HOPL-III, 2007)

77

memory
safety

attacks

“cold” cyberwar, in progress

78

Major advances are on track

 std::execution (concurrency and parallelism)

 Type and memory safety improvements
 target: parity with other modern languages

 Reflection + code generation (aka ‘injection’/…)
 part of our tide toward compile-time programming

 arguably most-impactful feature ever added

 I expect will dominate our next decade

 Contracts

 means “some initial parts already voted into C++26”

Herb Sutter

	Slide 1: Peering forward: C++’s next decade
	Slide 2: C++26/29
	Slide 3: C++26/29
	Slide 4
	Slide 5: 1 Reflection
	Slide 6
	Slide 7
	Slide 8
	Slide 9: ISO C++ & constexpr
	Slide 10: ISO C++ & GPUs
	Slide 11: ISO C++ & constexpr
	Slide 12
	Slide 13: ISO C++ & reflection
	Slide 14: P2996 example: Basic command-line option parser
	Slide 15
	Slide 16
	Slide 17: As seen on
	Slide 18: P2996 implementations
	Slide 19: 2 Safety
	Slide 20: Terms (per ISO/IEC 23643:2020)
	Slide 21: tl;dr
	Slide 22: Work in the same kitchen, hold the same knife…
	Slide 23: Work in the same kitchen, hold the same knife…
	Slide 24: Safety Profiles
	Slide 25
	Slide 26: C++26: “erroneous behavior”
	Slide 27: C++26: “erroneous behavior”
	Slide 28: Ode to information disclosure
	Slide 29: C++26 “erroneous behavior”
	Slide 30
	Slide 31
	Slide 32: Q&A
	Slide 33: Quick poll
	Slide 34
	Slide 35
	Slide 36
	Slide 37: 3 Simplicity
	Slide 38
	Slide 39
	Slide 40: Simplification… by addition?
	Slide 41: P0707: Small but important sugar
	Slide 42: Quick refresher example
	Slide 43: Now in EDG… godbolt.org/z/rvdabTb5M
	Slide 44: Now in EDG… godbolt.org/z/rvdabTb5M
	Slide 45: Now in EDG… godbolt.org/z/rvdabTb5M
	Slide 46: In the box with cppfront so far… all build to pure ISO C++ & work with GCC/Clang/MSVC
	Slide 47: In the box with cppfront so far… all build to pure ISO C++ & work with GCC/Clang/MSVC
	Slide 48: Optimizing C++ regex
	Slide 49: Compile-time regex…
	Slide 50: Compile-time regex…
	Slide 51: Sample run-time results (still incomplete)
	Slide 52: Sample compile-time results (still incomplete)
	Slide 53: QClass (user code)
	Slide 54: When you can’t express it all in C++ code
	Slide 55: rt_interface (user code)
	Slide 56: When you can’t express it all in C++ code
	Slide 57: When you can’t express it all in C++ code
	Slide 58: podio (particle physics data models) Benedikt Hegner, Axel Naumann
	Slide 59: When you can’t express it all in C++ code
	Slide 60: A funny thing happened on the way to the elevator…
	Slide 61
	Slide 62: A requirements roadmap: What will we need?
	Slide 63: A requirements roadmap: What will we need?
	Slide 64: A requirements roadmap: What will we need? (2)
	Slide 65: Risks
	Slide 66
	Slide 67: Terms (per ISO/IEC 23643:2020)
	Slide 68: Consider initialization again…
	Slide 69: Initialization safety: Having our cake and eating it
	Slide 70: Example (Cpp2 syntax, will propose for ISO C++ syntax too)
	Slide 71
	Slide 72
	Slide 73: Bounds safety: Low-hanging fruit
	Slide 74: Example: Looks right, ship it?
	Slide 75: Risks
	Slide 76
	Slide 77
	Slide 78: C++26/29
	Slide 79: Questions?

